Presented at the Vertical Flight Society 78th Annual Forum & Technology Display
Structures and Materials Technical Session
8 pages
Abstract:
In this research, Columbia Helicopters, Inc. (CHI) and Virginia Polytechnic Institute and State University collaborated to conduct the numerical model Verification and Validation (V&V) of a Global Finite Element Model (GFEM) of a tandem rotor helicopter developed by CHI. The V&V process is followed based on the ASME V&V guide for computational solid mechanics. The target mathematical model is verified with a convergence study by improving the mesh density and quality. For the model validation, the authors compare the dynamic and static finite element analyses (FEA) with the experimental results. During 1980s, NASA along with some industry participants pursued a Design Analysis Methods for Vibration (DAMVIBS) project to develop and validate accurate FEM based framework for dynamic analysis of helicopters. This work utilizes NASA's DAMVIBS project results to validate the dynamic responses for vertical, lateral, and pitch loading cases. In addition, for static validation, the authors have used CHI's static pull experimental data. This data includes measured strain values at various locations on the fuselage structure. Both dynamic and static FEA results match within 10 % of the DAMVIBS and static pull experimental results, respectively. Thus, this study successfully validates the reliability of the numerical model.
Did you attend Forum 78? Click the preview below to access the full paper.
The full paper is also available for purchase at the Vertical Flight Society Online Library and Store.